Characterization of Active Region Design High Power Quantum Cascade Superluminescent Emitters

Sara Kacmoli1,2, Rita Fang1, Abanti Basak1,3, Mei Chai Zheng1, and Claire Gmachl1
1 Department of Electrical Engineering, Princeton University, Princeton, NJ, 08544, USA
2 Permanent address: Department of Engineering, Smith College, Northampton, MA, 01063, USA
3 Permanent address: Department of Engineering, University of California, Santa Barbara, CA 93106, USA

Introduction
A Quantum Cascade Superluminescent (QCSL) emitter with a novel active region design has been developed in our lab1.

QSCL design characteristics:
- Increased dipole matrix element
- Active region doping for a broader gain
- Wavelength of operation around 8µm

Initial characterization revealed an additional ~5µm peak and current-voltage (I-V) characteristics that arise due to possible growth anomalies.

Methods
A Fourier Transform Infrared (FTIR) spectrometer was used to measure the spectra. Measurements were taken at 80K and 300K. Each device was tested with four or five different input currents.

Polarization measurements
Hypothesis:
The peak at 5 µm could be due to non-radiative transitions. Heat radiation is not polarized.

New growth measurements
Spectra were taken for a standard 8 µm laser design to evaluate the growth quality.

Experimental Results

Polarization measurements can help determine the nature of the transition.

Conclusions
- Polarization measurements reveal that the shorter wavelength emission is an intersubband (ISB) transition.2
- FTIR characterization for the new growth of an 8 um standard design shows a single peak at ~8µm, which is promising for the active region and injector region designs to be grown.

References:

Future Work
- An active region doped QSCL design and a conventional injector region doped QSCL design will be grown.
- Spectral and I-V characterization of the new designs will be analyzed.
- QC superluminescent emitters will be fabricated and characterized provided that, after the analysis, the mesas are well-understood.

This material is based upon work supported by the National Science Foundation under Grant No. EEC-0540832.