An Optical Breath Sensor Based on a Distributed Feedback Quantum Cascade Laser for Real Time Ammonia Detection

1Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005
2Bloomberg School of Public Health, The Johns Hopkins University, Baltimore, MD 21205
3St. Luke’s Hospital, Bethlehem, PA 18015
email: Rafal.Lewicki@rice.edu

OUTLINE:

- Motivation: Mid-IR QCL sensor for trace gas detection in exhaled breath
- Quartz Enhanced Photoacoustic Spectroscopy (QEPAS) method
- NH₃ sensor architecture
- Performance of the CW Distributed feedback (DFB) QCL
- Performance of the NH₃ sensor and results of real-time human breath data
- Summary
Mid-IR quantum cascade laser based sensor for:
• Non-invasive verification of patient medical condition

Sensor requirements:
• High sensitivity and selectivity
• Simple in use and robust
• Breath results available in real time
• Breath samples collected multiple times
Breath – a marker for diseases

• Exhaled human breath have both:
 – endogenous origin
 – exogenous origin

• The source of endogenous molecules are normal and abnormal physiological processes.

• The sources of exogenous molecules are:
 – inspiratory air,
 – ingested food and beverages,
 – any exogenous molecule that has entered the body by other routes (e.g. dermal absorption) [1]

Exhaled human breath contains ~ 400 different molecules, which can serve as biomarkers for the identification and monitoring of various types of human diseases or wellness states.

<table>
<thead>
<tr>
<th>Molecule</th>
<th>Formula</th>
<th>Biological/Pathology Indication</th>
<th>Center wavelength [μm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pentane</td>
<td>C_5H_{12}</td>
<td>Inflammatory diseases, transplant rejection</td>
<td>6.8</td>
</tr>
<tr>
<td>Ethane</td>
<td>C_2H_6</td>
<td>Lipid peroxidation and oxidation stress, lung cancer (low ppbv range)</td>
<td>6.8</td>
</tr>
<tr>
<td>Carbon Dioxide isotope ratio</td>
<td>^13^CO_2/^12^CO_2</td>
<td>Helicobacter pylori infection (peptic ulcers, gastric cancer)</td>
<td>4.4</td>
</tr>
<tr>
<td>Carbonyl Sulfide</td>
<td>COS</td>
<td>Liver disease, acute rejection in lung transplant recipients (10-500 ppbv)</td>
<td>4.8</td>
</tr>
<tr>
<td>Carbon Disulfide</td>
<td>CS_2</td>
<td>Disulfiram treatment for alcoholism</td>
<td>6.5</td>
</tr>
<tr>
<td>Ammonia</td>
<td>NH_3</td>
<td>Liver and kidney diseases, exercise physiology</td>
<td>10.3</td>
</tr>
<tr>
<td>Formaldehyde</td>
<td>CH_2O</td>
<td>Cancerous tumors (400-1500 ppbv)</td>
<td>5.7</td>
</tr>
<tr>
<td>Nitric Oxide</td>
<td>NO</td>
<td>Nitric oxide synthase activity, inflammatory and immune responses (e.g. asthma) and vascular smooth muscle response (6-100 ppb)</td>
<td>5.3</td>
</tr>
<tr>
<td>Hydrogen Peroxide</td>
<td>H_2O_2</td>
<td>Airway inflammation, oxidative stress (1-5 ppbv)</td>
<td>7.9</td>
</tr>
<tr>
<td>Carbon Monoxide</td>
<td>CO</td>
<td>Smoking response, lipid peroxidation, CO poisoning, vascular smooth muscle response</td>
<td>4.7</td>
</tr>
<tr>
<td>Ethylene</td>
<td>C_2H_4</td>
<td>Oxidative stress, cancer</td>
<td>10.6</td>
</tr>
<tr>
<td>Acetone</td>
<td>C_3H_6O</td>
<td>Ketosis, diabetes mellitus</td>
<td>7.3</td>
</tr>
</tbody>
</table>
Quartz enhanced photoacoustic spectroscopy

- Miniature size, <3 mm³ detection volume
- Dimensions in mm: length = 3.8, gap size = 0.3, thickness = 0.3, width = 0.58
- Piezo-active material
- Signal currents ≈ pA
- Intrinsically high Q factor, ~10,000 at ambient pressure; Q_vacuum ~ 125,000
- Optimum micro-resonator tubes are 4.4 mm long (~λ/4<l<λ/2 for sound at 32.8 kHz) and 0.6 mm in diameter
- Maximum SNR of QTF with mR tubes: ×30 (depending on gas composition and pressure)
QEPAS based NH₃ Gas Sensor Architecture

High Head Load (HHL) package of DFB-QCL
Single mode QCL radiation recorded with FTIR for different laser current values at a laser temperature of 18°C.

CW DFB-QCL optical power and current tuning at two different quasi-RT temperatures.

Laser power at targeted NH₃ line (967.35 cm⁻¹) is ~21 mW.
HITRAN simulated spectra @ 130 Torr indicating two potential NH$_3$ absorption lines of interest.

No overlap between NH$_3$ and CO$_2$ absorption lines was observed for the selected 967.35 cm$^{-1}$ NH$_3$ line.
Results obtained with a DFB-QCL based NH$_3$ gas sensor

2f QEPAS signal (black) and reference channel 3f signal (red) when laser was tuned across 967.35 cm$^{-1}$ line.

Minimum detectable limiting (MDL) concentration of NH$_3$ is:

~ 6 ppbv (1σ; 1 s time resolution)
Dilution calibration of the 5ppm NH₃ concentration

<table>
<thead>
<tr>
<th>NH₃ concentration [ppb]</th>
<th>Targeted</th>
<th>Measured</th>
</tr>
</thead>
<tbody>
<tr>
<td>5000</td>
<td>4988</td>
<td></td>
</tr>
<tr>
<td>2500</td>
<td>2488</td>
<td></td>
</tr>
<tr>
<td>2280</td>
<td>2232</td>
<td></td>
</tr>
<tr>
<td>1500</td>
<td>1434</td>
<td></td>
</tr>
<tr>
<td>1000</td>
<td>958</td>
<td></td>
</tr>
<tr>
<td>800</td>
<td>746</td>
<td></td>
</tr>
<tr>
<td>400</td>
<td>358</td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>161</td>
<td></td>
</tr>
</tbody>
</table>
NH₃ breath sensor

NH₃ sensor layout closed in a 14” x 10” x 12” box.

NH₃ sensor system uses:
- NH₃ sensor box (1)
- ILX laser diode controller (2)
- Control electronics unit (3)
- Loccioni breath analyzer (4)
- Laptop (5)
- Power supply (6) and pump

Breath analyzer from Loccioni
For each patient, a separate folder is created on the Loccioni memory stick. Each folder contains:
- excel worksheet with 3 columns data: CO2 [%], Airway pressure [mbar] and Ammonia [ppb]
- CO2 [%] plot (1)
- Airway pressure [mbar] plot (2)
The Ammonia [ppb] data is not saved as a plot.
Real data for human breath sample after mouth wash

Data collection started at 12:21

Max NH₃ concentration [ppb]: 471

Data collection started at 12:28

Max NH₃ concentration [ppb]: 361

Data collection started at 12:35

Max NH₃ concentration [ppb]: 153
Summary

- Monitoring of ammonia concentration in exhaled breath using laser spectroscopy techniques provides a **fast, non-invasive** diagnostic method for patients with liver and kidney disorders, and helicobacter pylori infections (if patient has injected urea and the NH$_3$ is labeled with 15N).
- Minimum detectable concentration of NH$_3$ with DFB-QCL based sensor was observed at ~ 6 ppbv (1σ; 1 s time resolution).
- Fast time response was obtained by keeping sensor enclosure at 38°C to minimize ammonia adsorption effects.
- By using a commercial breath analyzer with built-in capnograph device the CO$_2$ concentration measurements are performed independently.
- Laser spectroscopy with a mid-infrared, room temperature, continuous wave, high performance DFB QCL is a promising analytical approach for real time breath analysis and the quantification of breath metabolites.
Future goal - Ideal breath analyzer

- Hand-held device
- Fast – real-time results
- Accurate – Self calibrating
- Sensitive – sub ppb detection
- Inexpensive

Dr. Beverly Crusher uses a medical tricorder in 2369.

THANK YOU!!!